Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.

Identifieur interne : 000218 ( Main/Exploration ); précédent : 000217; suivant : 000219

Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.

Auteurs : Joshua A. Olive [États-Unis] ; J A Cowan [États-Unis]

Source :

RBID : pubmed:29689452

Descripteurs français

English descriptors

Abstract

Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.

DOI: 10.1016/j.jinorgbio.2018.04.007
PubMed: 29689452
PubMed Central: PMC5964037


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.</title>
<author>
<name sortKey="Olive, Joshua A" sort="Olive, Joshua A" uniqKey="Olive J" first="Joshua A" last="Olive">Joshua A. Olive</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States. Electronic address: cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29689452</idno>
<idno type="pmid">29689452</idno>
<idno type="doi">10.1016/j.jinorgbio.2018.04.007</idno>
<idno type="pmc">PMC5964037</idno>
<idno type="wicri:Area/Main/Corpus">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000247</idno>
<idno type="wicri:Area/Main/Curation">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000247</idno>
<idno type="wicri:Area/Main/Exploration">000247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.</title>
<author>
<name sortKey="Olive, Joshua A" sort="Olive, Joshua A" uniqKey="Olive J" first="Joshua A" last="Olive">Joshua A. Olive</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States. Electronic address: cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of inorganic biochemistry</title>
<idno type="eISSN">1873-3344</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>HSP70 Heat-Shock Proteins (chemistry)</term>
<term>HSP70 Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Molecular Chaperones (chemistry)</term>
<term>Molecular Chaperones (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chaperons moléculaires (composition chimique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Protéines du choc thermique HSP70 (composition chimique)</term>
<term>Protéines du choc thermique HSP70 (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Protéines du choc thermique HSP70</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29689452</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3344</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>184</Volume>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Journal of inorganic biochemistry</Title>
<ISOAbbreviation>J Inorg Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.</ArticleTitle>
<Pagination>
<MedlinePgn>100-107</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0162-0134(17)30836-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jinorgbio.2018.04.007</ELocationID>
<Abstract>
<AbstractText>Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Olive</LastName>
<ForeName>Joshua A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States. Electronic address: cowan.2@osu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI072443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Inorg Biochem</MedlineTA>
<NlmUniqueID>7905788</NlmUniqueID>
<ISSNLinking>0162-0134</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490651">HSCB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018840">HSP70 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492001">HSPA9 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018840" MajorTopicYN="N">HSP70 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29689452</ArticleId>
<ArticleId IdType="pii">S0162-0134(17)30836-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.jinorgbio.2018.04.007</ArticleId>
<ArticleId IdType="pmc">PMC5964037</ArticleId>
<ArticleId IdType="mid">NIHMS962539</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Olive, Joshua A" sort="Olive, Joshua A" uniqKey="Olive J" first="Joshua A" last="Olive">Joshua A. Olive</name>
</region>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000218 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000218 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29689452
   |texte=   Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29689452" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020